从汽车和交通检测到自动驾驶汽车系统,可以将街道对象的对象检测应用于各种用例。因此,找到最佳的对象检测算法对于有效应用它至关重要。已经发布了许多对象检测算法,许多对象检测算法比较了对象检测算法,但是很少有人比较了最新的算法,例如Yolov5,主要是侧重于街道级对象。本文比较了各种单阶段探测器算法; SSD MobilenetV2 FPN-Lite 320x320,Yolov3,Yolov4,Yolov5L和Yolov5S在实时图像中用于街道级对象检测。该实验利用了带有3,169张图像的修改后的自动驾驶汽车数据集。数据集分为火车,验证和测试;然后,使用重新处理,色相转移和噪音对其进行预处理和增强。然后对每种算法进行训练和评估。基于实验,算法根据推论时间及其精度,召回,F1得分和平均平均精度(MAP)产生了不错的结果。结果还表明,Yolov5L的映射@.5 of 0.593,MobileNetV2 FPN-Lite的推理时间最快,而其他推理时间仅为3.20ms。还发现Yolov5s是最有效的,其具有Yolov5L精度和速度几乎与MobilenetV2 FPN-Lite一样快。这表明各种算法适用于街道级对象检测,并且足够可行,可以用于自动驾驶汽车。
translated by 谷歌翻译
本文旨在更深入地研究各种可用的模型,包括:InceptionV3,InceptionResnetv2,MobileNetV2和EdgitionNetB7使用转移学习,以对日本动画风格的角色面对面进行分类。本文表明,有效网络-B7的精度率最高,而85.08 \%top-1的精度,其次是MobileNetV2,其准确结果略有较低,但其益处的推理时间较低,所需参数数量较少。本文还使用了一些射击的学习框架,特别是原型网络,该网络可产生不错的结果,可以用作传统转移学习方法的替代方法。
translated by 谷歌翻译
Periocular refers to the region of the face that surrounds the eye socket. This is a feature-rich area that can be used by itself to determine the identity of an individual. It is especially useful when the iris or the face cannot be reliably acquired. This can be the case of unconstrained or uncooperative scenarios, where the face may appear partially occluded, or the subject-to-camera distance may be high. However, it has received revived attention during the pandemic due to masked faces, leaving the ocular region as the only visible facial area, even in controlled scenarios. This paper discusses the state-of-the-art of periocular biometrics, giving an overall framework of its most significant research aspects.
translated by 谷歌翻译
Feedforward fully convolutional neural networks currently dominate in semantic segmentation of 3D point clouds. Despite their great success, they suffer from the loss of local information at low-level layers, posing significant challenges to accurate scene segmentation and precise object boundary delineation. Prior works either address this issue by post-processing or jointly learn object boundaries to implicitly improve feature encoding of the networks. These approaches often require additional modules which are difficult to integrate into the original architecture. To improve the segmentation near object boundaries, we propose a boundary-aware feature propagation mechanism. This mechanism is achieved by exploiting a multi-task learning framework that aims to explicitly guide the boundaries to their original locations. With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams. The predicted boundaries and directions are fused to propagate the learned features to refine the segmentation. We conduct extensive experiments on the S3DIS and SensatUrban datasets against various baseline methods, demonstrating that our proposed approach yields consistent improvements by reducing boundary errors. Our code is available at https://github.com/shenglandu/PushBoundary.
translated by 谷歌翻译
Cartesian impedance control is a type of motion control strategy for robots that improves safety in partially unknown environments by achieving a compliant behavior of the robot with respect to its external forces. This compliant robot behavior has the added benefit of allowing physical human guidance of the robot. In this paper, we propose a C++ implementation of compliance control valid for any torque-commanded robotic manipulator. The proposed controller implements Cartesian impedance control to track a desired end-effector pose. Additionally, joint impedance is projected in the nullspace of the Cartesian robot motion to track a desired robot joint configuration without perturbing the Cartesian motion of the robot. The proposed implementation also allows the robot to apply desired forces and torques to its environment. Several safety features such as filtering, rate limiting, and saturation are included in the proposed implementation. The core functionalities are in a re-usable base library and a Robot Operating System (ROS) ros_control integration is provided on top of that. The implementation was tested with the KUKA LBR iiwa robot and the Franka Emika Robot (Panda) both in simulation and with the physical robots.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
Pre-training is an effective technique for ensuring robust performance on a variety of machine learning tasks. It typically depends on large-scale crawled corpora that can result in toxic or biased models. Such data can also be problematic with respect to copyright, attribution, and privacy. Pre-training with synthetic tasks and data is a promising way of alleviating such concerns since no real-world information is ingested by the model. Our goal in this paper is to understand what makes for a good pre-trained model when using synthetic resources. We answer this question in the context of neural machine translation by considering two novel approaches to translation model pre-training. Our first approach studies the effect of pre-training on obfuscated data derived from a parallel corpus by mapping words to a vocabulary of 'nonsense' tokens. Our second approach explores the effect of pre-training on procedurally generated synthetic parallel data that does not depend on any real human language corpus. Our empirical evaluation on multiple language pairs shows that, to a surprising degree, the benefits of pre-training can be realized even with obfuscated or purely synthetic parallel data. In our analysis, we consider the extent to which obfuscated and synthetic pre-training techniques can be used to mitigate the issue of hallucinated model toxicity.
translated by 谷歌翻译
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.
translated by 谷歌翻译